DEPARTMENT OF MATHEMATICS

CURRICULUM PLANNING AND IMPLEMENTATION

Even Semester (2019-20)

(P.G. Classes)

Department: Mathematics Name of the faculty Member: Ms. Nitika Chugh Course Name: Real Analysis II Class: M. Sc. Semester: II Availability Timings: 9.00 AM to 3.00 PM E-mail: <u>nitika.nitj@gmail.com</u>

Course Objectives:

The aim of the course is to demonstrate theoretical knowledge and have practical skills in the subject of advanced real analysis. Demonstrate an ability to initiate and sustain in-depth research relevant to real analysis. Furthermore, in this course the students will develop a proper understanding of measurable functions, measures and the Lebesgue integral. Given these concepts they will consider various concepts of convergence of measurable functions and the convergence of the corresponding integrals, changes of measures and spaces of integrable function.

Program Learning Outcomes:

<u>(Knowledge and understanding, Intellectual skills, practical skills, general skills)</u> Learning outcomes:

A. <u>Knowledge and Understanding:</u> Students will know

- The theories and concepts used in the real analysis.

- Identify the steps required to carry out a piece of research on a topic within real analysis.
- Recognize the contribution and impacts of real analysis in different areas of science.

B. Intellectual(cognitive/Analytical) skills:

- Apply appropriate theories, principles and concepts relevant to the real analysis.
- Assess and evaluate the literature within real analysis.
- Demonstrate an appropriate judgment in selecting and presenting information using various methods relevant to real analysis.

C. <u>Practical skills:</u>

- Plan and design practical activities using techniques and procedures appropriate to real analysis.
- Plan and design a piece of independent research using real analysis media and techniques.

D. <u>General skills:</u>

- Use appropriate effective written and oral communication learning relevant to the topics in the course of real analysis.
- Work effectively as part of a group, involving leadership, group dynamics and interpersonal skills such as listening, negotiation and persuasion relevant to these topics.
- Deal with problems relevant to real analysis topics using ideas and techniques some of which are at the forefront of the discipline.
- Think independently and develop the ability to self appraise and reflect on scientific data Arabic and in English relevant to real analysis.

Detailed Course content available at www.gndu.ac.in

Secti	Lecturewise	No.of	Mode of	Students
on	Breakage	Lectures	Delivery *	Role*
Α	Uniform convergence	5	Lecture	Participation/
				Discussion
	Uniform convergence	4	Lecture	Participation/
	and integration,			Discussion

	differentiations			
	Equi continuous families	3	Lecture	Participation/
	of function			Discussion
	Arzela's theorem	2	Lecture	Participation/
				Discussion
	Weierstrass	2	Lecture	Participation/
	Approximation theorem			Discussion
В	Outer and lebesgue	4	Lecture	Participation/
	measure			Discussion
	Properties of measurable	5	Lecture	Participation/
	set			Discussion
	Non-measurable set	5	Lecture	Participation/
				Discussion
	Measurable functions	6	Lecture	Participation/
				Discussion
С	Characteristics, step and	5	Lecture	Participation/
	simple function			Discussion
	Little wood's three	5	Lecture	Participation/
	principle			Discussion
	Lebesgue integral of	4	Lecture	Participation/
	bounded function			Discussion
	Comparison of Riemann	4	Lecture	Participation/
	and lebesgue integral			Discussion
	Integral of a non	6	Lecture	Participation/
	negative function,			Discussion
	general lebesgue integral			
	Convergence in measure	3	Lecture	Participation/
				Discussion
D	Differentiation of	5	Lecture	Participation/
	monotone function			Discussion
	Differentiation of	4	Lecture	Participation/
	integral			Discussion
	Absolute continuity	4	Lecture	Participation/
				Discussion

- Lectures: Six per weekStudent Seminars: two per week

- Assignments: The students will be asked to read the textbook in advance and write articles on given topics
- PowerPoint Presentations
- Quiz
- Group Discussion

Modes Of Assessment	Minimum Score Required (to Qualify for the next Exam /Class)	
Continuous Internal		
Evaluation(CIE)		
1.Class Tests(Unit wise)	40%	After Each Unit
		Every Week
2.Student Seminars	40%	Last week Of
3.In House Exams		March
End of Semester	20%	Last Week of April

Reference books:

S.no	Standard reference books	Author
1	Principles of Mathematical Analysis (3rd	Walter Rudin
	edition) McGraw Hill Ltd. Ch.7(7.1-7.27)	
2	Mathematical Analysis, Wiley Eastern	Malik, S.C.
3	Real Analysis, Macmillan Co. (Ch. 3,4,5	Royden, H.L.
	excluding section 2,5)	
4	Lebesgue Measure and Integration	Jain, P.K. and Gupta, V.P.
5	Introduction to Measure Theory, Van Nosh	Barra, G De
	and Reinhold Company	

Attendance Policy:

Department: Mathematics Name of the faculty Member: Dr. Santokh Singh Minhas Course Name: Algebra II Class: M.Sc Semester: II Availability Timings: 9.00 AM to 3.00 PM E-mail: <u>santokhmathlkc@gmail.com</u>

Course Objectives:

This course aims to provide a first approach to the subject of algebra, which is one of the basic pillars of modern mathematics. The focus of the course will be the study of certain structures called groups, rings, fields and some related structures. Abstract algebra gives to student a good mathematical maturity and enables to build mathematical thinking and skill.

Program Learning Outcomes:

(Knowledge and understanding, Intellectual skills, general skills,) Learning outcomes:

E. <u>Knowledge and Understanding:</u>

- Students will be introduced to and have knowledge of many mathematical concepts studied in abstract mathematics such as permutation groups, factor groups and Abelian groups.
- Students will see and understand the connection and transition between previously studied mathematics and more advanced mathematics.

- The students will actively participate in the transition of important concepts such homeomorphisms & isomorphisms from discrete mathematics to advanced abstract mathematics.
- Students will gain experience and confidence in proving theorems. A blended teaching method will be used requiring the students to prove theorems give the student the experience and knowledge.

F. Intellectual(cognitive/Analytical) skills:

Students will be

- Able to employ the concepts and methods described in the syllabus.
- Acquire communication and organizational skills, including effective written communication in their weekly assignments.
- Able to follow complex logical arguments and develop modest logical arguments.

G. General skills:

- Communicate with other positively with problems relevant to problems in modern algebra.
- Use organizational skills (including task and time management) relevant to modern algebra individually and in group situation.
- Solve problems relevant to modern algebra.

Detailed Course content available at www.gndu.ac.in

Secti	Lecturewise	No.of	Mode of	Students
on	Breakage	Lectures	Delivery *	Role*
Α	The field of Quotients of	6	Lecture	Participation/
	an integral domain			Discussion
	Principal Ideal domains,	5	Lecture	Participation/
	Euclidean Rings			Discussion
	The ring of Gaussian	7	Lecture	Participation/
	Integers, Unique			Discussion
	Factorization domains,			
	Polynomial Rings			
	Gauss's theorem and	5	Lecture	Participation/
	irreducibility of a			Discussion
	polynomial			
B	Finite and Infinite,	6	Lecture	Participation/
	Simple and Algebraic			Discussion

	Extensions			
	Splitting fields	4	Lecture	Participation/
				Discussion
	Existence and	4	Lecture	Participation/
	uniqueness theorem of			Discussion
	extension fields			
	Separable and	5	Lecture	Participation/
	inseparable extensions			Discussion
	Perfect fields, finite	4	Lecture	Participation/
	fields			Discussion
С	Existence of GF(pn)	2	Lecture	Participation/
				Discussion
	Construction with	4	Lecture	Participation/
	Straight edge ruler and			Discussion
	compass			
	Galois Theory: Group of	5	Lecture	Participation/
	automorphisms of a			Discussion
	field.			
	Normal extensions and	4	Lecture	Participation/
	Fundamental Theorem			Discussion
	of Galois theory			
	Symmetric rational	3	Lecture	Participation/
	functions, Solvability by			Discussion
	radicals			
D	Modules, Cyclic	6	Lecture	Participation/
	Modules			Discussion
	simple modules, Free	4	Lecture	Participation/
	Modules			Discussion
	Fundamental structure	5	Lecture	Participation/
	theorem for finitely			Discussion
	generated modules over			
	a P.I.D. (Statement only)			

Lectures: Six per week Student Seminars: two per week Assignments: The students will be asked to read the textbook in advance and write articles on given topics PowerPoint Presentations Quiz Group Discussion

Modes Of Assessment	Minimum Score Required (to Qualify for the next Exam /Class)	
Continuous Internal Evaluation(CIE)		
1.Class Tests(Unit wise)	40%	After Each Unit
2 Student Seminara		Every Week
3.In House Exams	40%	Last week Of March
End of Semester	20%	Last Week of April

Reference books:

S.no	Standard reference books	Author
1	Topics in Algebra, Willey Eastern 1975	Herstein, I.N.
2	An introduction to Abstract Algebra	Fraleigh, J.B.
3	Modern Algebra	Surjit Singh
4	Basic Abstract Algebra(1997),	Bhattacharya, P.B.,Jain,
	Ch-14(Sec, 1-5)	S.K. & Nagpal S.R.

Attendance Policy:

Department: Mathematics Name of the faculty Member: Dr. Dinkar Sharma Course Name: Mechanics II Class: M.Sc Semester: II Availability Timings: 9.00 AM to 3.00 PM E-mail: <u>dinkarmathlkc@gmail.com</u>

Course Objectives:

Mechanics is the study of the physics of motion and how it related to applied forces. It lays the foundation of understanding the world around us through the how and why of motion. The second module that covers calculus based mechanics. Calculus of Variations deals with optimization problems where the variables, instead of being finite dimensional as in ordinary calculus, are functions. This course treats the foundations of calculus of variations and gives examples on some (classical and modern) applications within physics and engineering science.

Program Learning Outcomes:

(Knowledge and understanding, Intellectual skills, practical skills) Learning outcomes:

H. Knowledge and Understanding:

- Define the characteristics and calculate the magnitude of selected mechanical properties of materials.

- Describe the basic concepts and principles and perform relevant calculations with respect to the mechanical properties of materials as they relate to problems of strength and stability of structures and mechanical components.

I. Intellectual(cognitive/Analytical) skills:

In order to pass the course the student should be able to

- Give an account of the foundations of calculus of variations and of its applications in mathematics and physics.
- Describe the brachistochrone problem mathematically and solve it.
- Solve isoperimetric problems of standard type.
- solve simple initial and boundary value problems by using several variable calculus;
- Formulate maximum principles for various equations and derive consequences.
- Formulate important results and theorems covered by the course.
- Use the theory, methods and techniques of the course to solve problems.

J. <u>Practical skills:</u>

- Relative motion. Inertial and non inertial reference frames.
- Parameters defining the motion of mechanical systems and their degrees of freedom.
- Study of the interaction of forces between solids in mechanical systems.
- Centre of mass and inertia tensor of mechanical systems.
- Application of the vector theorems of mechanics and interpretation of their results.
- Newton's laws of motion and conservation principles.
- Introduction to analytical mechanics as a systematic tool for problem solving..

Detailed Course content available at www.gndu.ac.in

Secti	Lecturewise	No. of	Mode of	Students
on	Breakage	Lectures	Delivery*	Role*
Α	General motion of a	3	Lecture	Participation
	rigid body			Discussion
	Angular momentum of a	3	Lecture	Participation
	system			Discussion
	Use of centroid, moving	4	Lecture	Participation
	origins, impulsive forces			Discussion
	Problems in two-	3	Lecture	Participation
	dimensional rigid body			Discussion
	motion			
	law of conservation of	4	Lecture	Participation
	Angular momentum,			Discussion
	illustrating the laws of			
	motion			
	Law of conservation of	5	Lecture	Participation
	energy, Impulsive			Discussion
	motion			
В	Euler's dynamical	6	Lecture	Participation
	equations for the motion			Discussion
	of a rigid body about a			
	fixed point, further			
	properties of rigid body			
	motion under no forces.			
	Problems on general	3	Lecture	Participation
	three-dimensional rigid			Discussion
~	body motion.		-	
С	Generalised co-ordinates	4	Lecture	Participation
	and velocities Virtual			Discussion
	work, generalized			
	torces.	~	T	D
	Lagrange's equations for	5	Lecture	Participation
	a noionomic system and			Discussion
	their applications to			
	small oscillation.			
	Lagrange's equations for			
	impulsive forces.			

	Kinetic energy as a	5	Lecture	Participation
	quadratic function of			Discussion
	velocities. Equilibrium			
	configurations for			
	conservative holonomic			
	dynamical systems.			
	Theory of small	5	Lecture	Participation
	oscillations of			Discussion
	conservative holonomic			
	dynamical systems			
D	Linear functional,	6	Lecture	Participation
	Extremal. Euler's -			Discussion
	Lagrange's equations of			
	single independent and			
	single dependent			
	variable.			
	Brachistochrone	6	Lecture	Participation
	problem, Extension of			Discussion
	the variational method.			
	Hamilton's Principle,	7	Lecture	Participation
	Principle of Least			Discussion
	action. Distinctions			
	between Hamilton			
	Principle and the			
	Principle of Least			
	Action.			
	Rayleigh-Ritz Method,	6	Lecture	Participation
				Discussion

- Lectures: Six per week
- Student Seminars: two per week
- Assignments: The students will be asked to read the textbook in advance and write articles on given topics
- PowerPoint Presentations
- Quiz
- Group Discussion

Reference books:

S.no	Standard reference books	Author
1	Text Book of Dynamics	Chorlton, F.
2	Tensor Analysis	Elssgists, L.
3	Calculus of Variation with Application	Gupta
	(PHI Learning Pvt, Ltd)	

Modes Of Assessment	Minimum Score Required (to Qualify for the next Exam /Class)	
Continuous Internal Evaluation(CIE)		
1.Class Tests(Unit wise)	40%	After Each Unit
2.Student Seminars		Every Week
3.In House Exams	40%	Last week Of March
End of Semester	20%	Last Week of April

Attendance Policy:

Department: Mathematics Name of the faculty Member: Prof.Palwinder Singh Course Name: Differential and Integral Equations Class: M.Sc Semester: II Availability Timings: 9.00 AM to 3.00 PM E-mail: <u>palwindermathlkc@gmail.com</u>

Course Objectives:

The aim of the course is to study integral equations and to know that what is the relationship between the integral equations and ordinary differential equations and how to solve linear and non-linear integral equations by different methods with some problems which give rise to integral equations.

Program Learning Outcomes:

(Knowledge and understanding, Intellectual skills, practical skills) Learning outcomes:

- K. <u>Knowledge and Understanding:</u> Students will know
- Model with first-order differential equations (DE) and identify initial value problems
- Explore the use of partial differential equations as models for processes of heat transfer, wave propagation, and diffusion.
- Develop essential methods of obtaining solutions of classical partial differential equations.
- Explore the methods of solutions of boundary value problems. Investigate systems of ordinary differential equations.

L. Intellectual(cognitive/Analytical) skills:

- Obtain solutions for ordinary differential equations whose non homogeneous terms include discontinuous functions or distributions.
- Solve classical partial differential equations such as the heat equation, wave equation, Laplace's equation, and Poisson's equation by various methods.
- Obtain solutions for systems of ordinary differential equations using various tools of linear algebra.

M. Practical skills:

- Solve problems in ordinary differential equations, dynamical systems, stability theory, and a number of applications to scientific and engineering problems.
- Demonstrate their ability to write coherent mathematical proofs and scientific arguments needed to communicate the results obtained from differential equation models.

Detailed Course content available at www.gndu.ac.in

Secti	Lecturewise	No.of	Mode of	Students
on	Breakage	Lectures	Delivery*	Role*
Α	Partial Differential	5	Lecture	Participation/
	Equations of First Order			Discussion
	: origin of first order			
	partial differential			
	equations.			
	Cauchy problem of first	4	Lecture	Participation/
	order equations.			Discussion
	Integral surface through	5	Lecture	Participation/
	a given curve. Surface			Discussion
	orthogonal to given			
	system of surfaces.			
	Non linear p.d.e of first	4	Lecture	Participation/
	order,			Discussion
	Charpit's method			
	Jacobi's method.	3	Lecture	Participation/
				Discussion
	Partial differential	4	Lecture	Participation/
	equations of the 2nd			Discussion

-				
	order. Origin of 2nd			
	order equations.			
	Linear p.d.e. with	3	Lecture	Participation/
	constant coefficients and			Discussion
	their complete solutions.			
B	Second order equation	3	Lecture	Participation/
	with variable coefficient			Discussion
	and their classification			
	and reduction to			
	standard form			
	Solution of linear	4	Lecture	Participation/
	hyperbolic equation.			Discussion
	Non-linear equations of			
	second order			
	Monge's Method.	3	Lecture	Participation/
				Discussion
	Solution of Laplace,	3	Lecture	Participation/
	wave and diffusion			Discussion
	equations by method of			
	separation of variables			
	Fourier transforms.	3	Lecture	Participation/
				Discussion
	Green function for	6	Lecture	Participation/
	Laplace, waves and			Discussion
	diffusion equation			
С	Integral Equations and	4	Lecture	Participation/
	algebraic system of			Discussion
	linear equations			
	Volterra Equation of	4	Lecture	Participation/
	first and second order			Discussion
	Volterra Integral	5	Lecture	Participation/
	Equations and Linear			Discussion
	Differential Equations			
D	Fredholm Equations,	5	Lecture	Participation/
	Solution by Method of			Discussion
	Successive			
	Approximation			
	Pincherte-Goursat	3	Lecture	Participation/
	Kernels			Discussion

Fre	dholm Theorem	2	Lecture	Participation/
				Discussion

Lectures: Six per week Student Seminars: two per week Assignments: The students will be asked to read the textbook in advance and write articles on given topics PowerPoint Presentations Quiz Group Discussion

Modes Of Assessment	Minimum Score	
	Required (to Qualify for	
	the next Exam /Class)	
Continuous Internal		
Evaluation(CIE)		
	40%	After Each Unit
1.Class Tests(Unit wise)		
		Every Week
2.Student Seminars	40%	Last week of March
3.In House Exams		
End of Semester	20%	Last Week of April

Reference books:

S.no	Standard reference books	Author
1	Integral Equation (Ch. I and II)	Tricomi, F.G.
2	Linear integral equations	Kanwal R,P.
3	Differential Equations	Plaggio
4	Elements of partial differential equations	Sneddon, I.N.
5	Integral Equations	Levitt, W.W.
6	Integral Equations	Mikhlin

Attendance Policy:

Lecture attendance is mandatory. Students are expected to maintain 75% attendance of the total lectures delivered, failing which they will be detained from appearing in university exams.

CURRICULUM PLANNING AND IMPLEMENTATION

Department: Mathematics Name of the faculty Member: Dr. Harjit Singh Course Name: Tensors and Differential Geometry Class: M.SC Semester: II Availability Timings: 9.00 AM to 3.00 PM E-mail: <u>harjitlkc@gmail.com</u>

Course Objectives:

The aim of the course is to provide for the students an introduction to theory of tensors which is a classical subject in multi linear algebra and differential geometry. The course focuses on the basic concept of tensor products of vector spaces and operators, various notions of tensor ranks. Furthermore, this course introduces students to the key concepts and techniques of differential geometry.

Program Learning Outcomes:

(Knowledge and understanding, Intellectual skills, practical skills) Learning outcomes:

N. Knowledge and Understanding:

Student will know

- Scalar and cross product of vectors in 2 and 3 dimensions represented as differential forms or tensors.
- The vector-valued functions of a real variable and their curves and in turn the geometry of such curves including curvature, torsion and the Serret-Frenet frame and intrinsic geometry,
- Scalar and vector valued functions of 2 and 3 variables and surfaces, and in turn the geometry of surfaces

- The differential ideas of divergence, curl, and the Laplacian along with their physical interpretations, using differential forms or tensors to represent derivative operations.

O. Intellectual (cognitive/Analytical) skills:

- State definitions and theorems and present standard proofs accurately without access to notes/books.
- Perform local calculations in differential geometry accurately (tensor calculus, covariant derivatives, Lie derivatives).
- Calculate curvature tensors for simple space times.
- Derive and solve the geodesic equations for simple space times.

P. Practical skills:

- Apply theory developed in the course to solve unseen problems.
- Integral curves of vector fields and solving differential equations to find such curves.
- The differential ideas of divergence, curl, and the Laplacian along with their physical interpretations, using differential forms or tensors to represent derivative operations,

Detailed Course Contents: Available at www.gndu.ac.in

Secti on	Lecturewise Breakage	Number of lectures	Mode of Delivery*	Students Role*
A	Tensors	5	Lecture	Participation/
				Discussion
	Kronecker delta	3	Lecture	Participation/
				Discussion
	Christoffel Symbols	4	Lecture	Participation/
				Discussion
	Covariant	6	Lecture	Participation/
	Differentiation of			Discussion
	tensors			
В	Theory of space curves	4	Lecture	Participation/
				Discussion
	Serret-Frenet Formulae	3	Lecture	Participation/

				Discussion
	Contact Between Curves	4	Lecture	Participation/
	And Surfaces			Discussion
	Locus of centre of	3	Lecture	Participation/
	curvature			Discussion
	Helices, Spherical	3	Lecture	Participation/
	curvature			Discussion
	Spherical Indicatrix,	5	Lecture	Participation/
	Bertrand Curves			Discussion
С	Envelope, Developable	5	Lecture	Participation/
	Surfaces			Discussion
	Two fundamental forms	4	Lecture	Participation/
				Discussion
	Conjugate And Principal	7	Lecture	Participation/
	Direction, Asymptotic			Discussion
	lines			
	Theorem of Beltrami	3	Lecture	Participation/
	and Enneper			Discussion
	Mainardi- Codazzi	4	Lecture	Participation/
	Equations			Discussion
D	Geodesics	7	Lecture	Participation/
				Discussion
	Clairaut's Theorem	3	Lecture	Participation/
				Discussion
	Gauss Bonnet Theorem	3	Lecture	Participation/
				Discussion
	Tissot's Theorem	3	Lecture	Participation/
				Discussion

- Lectures: Six per week
- Student Seminars: two per week
- Assignments: The students will be asked to read the textbook in advance and write articles on given topics
- PowerPoint Presentations
- Quiz
- Group Discussion

Modes Of Assessment	Minimum Score Required (to Qualify for the next Exam /Class)	
Continuous Internal Evaluation(CIE)		
1.Class Tests(Unit wise)		
2.Student Seminars	40%	After each unit
3.In House Exams	40%	Last week Of March
End of Semester	20%	Last Week of April

Reference books:

S.no	Standard reference books	Author
1	Vector and Tensor Analysis	Lass, H
2	Tensor Analysis	Shanti Narayan
3	Differential Geometry	Weather burn, C.E
4	Introduction to Differential Geometry	Willmore, TJ
5	Differential Geometry	Bansi Lal

Attendance Policy:

Department: Mathematics Name of the faculty Member:Dr. Harjit Singh Course Name: Functional Analysis II Class: M.Sc Semester: IV Availability Timings: 9.00 AM to 3.00 PM E-mail:

Course Objectives:

Demonstrate theoretical knowledge and have practical skills in the theory of analysis. Demonstrate an ability to initiate and sustain in-depth research relevant to functional analysis. Have an opportunity to put theory into practice via applications of functional analysis on real life problems.

Program Learning Outcomes:

(Knowledge and understanding, Intellectual skills, professional skills, general skills)Learning outcomes:

A. Knowledge and Understanding:

- Summarize the theories and concepts used in the functional analysis.
- Identify the steps required to carry out a piece of research on a topic within functional analysis.
- Recognize the contribution and impacts of functional analysis in applied science.

B. Intellectual (cognitive/Analytical) skills:

- Apply appropriate theories, principles and concepts relevant to the functional analysis.
- Demonstrate a reasoned argument to the solution of familiar and unfamiliar problems relevant to functional analysis.
- Assess and evaluate the literature within functional analysis

C. Professional skills:

- Plan practical activities using techniques and procedures appropriate to functional analysis.
- Execute a piece of independent research using functional analysis media and techniques.

D. General skills:

- Deal with appropriate effective written and oral communication skills relevant to functional analysis.
- Work effectively as a part of group, involving leadership, group dynamics relevant to functional analysis.

Detailed Course content available at www.gndu.ac.in

Unit	Lecture wise	No. of	Mode of	Students
	Breakage	Lectures	Delivery *	Role*
Ι	Strong and weak	4	Lecture	Participation/
	convergence in finite			Discussion
	and infinite dimensional			
	normed linear spaces.			
	Weak convergences in	5	Lecture	Participation/
	Hilbert spaces			Discussion
	Weakly compact set in	5	Lecture	Participation/
	Hilbert spaces.			Discussion
Π	The adjoint of an	7	Lecture	Participation/
	operator, self adjoint			Discussion
	operators			
	normal operators,	3	Lecture	Participation/
	Unitary operators,			Discussion
	Projections on a Hilbert	6	Lecture	Participation/
	space.			Discussion
III	Eigen- values and Eigen	4	Lecture	Participation/
	vectors			Discussion
	Spectrum of a bounded	3	Lecture	Participation/
	linear operator			Discussion
	Spectrum of self-adjoint,	5	Lecture	Participation/
	positive and Unitry			Discussion

	operators.			
	Spectral Theorem for	6	Lecture	Participation
	normal operators			Discussion
IV	Compact Linear	7	Lecture	Participation
	Operator on normed			Discussion
	spaces, properties of			
	compact linear operators			
	Spectral properties of	6		
	compact linear			
	operators.			
V	Banach algebras:	7	Lecture	Participation
	definitions and simple			Discussion
	examples			
	Regular and singular	5	Lecture	Participation
	elements.			Discussion
	Topological divisors of	3	Lecture	Participation
	zero			Discussion
	Spectrum of an element	3	Lecture	Participation
	of Banach Algebra,			Discussion
	formula for spectral			
	radius			

Lectures: Six per week Student Seminars: two per week Assignments: The students will be asked to read the textbook in advance and write articles on given topics PowerPoint Presentations Quiz Group Discussion

Modes Of Assessment	Minimum Score	
	Required (to Qualify for	
	the next Exam /Class)	
Continuous Internal		
Evaluation(CIE)		
	40%	After Each Unit

1.Class Tests(Unit wise)		Every Week
2.Student Seminars	40%	Last week Of March
3.In House Exams		
End of Semester Exam	20%	Last Week of April

Reference books:

S.no	Standard reference books	Author
1	Introduction to Topology and Modern	Simmons, G.F.
	Analysis Ch. X(Sections 56-59), Ch.XI	
	(Sections 61-62), Ch.12(Sections 64-68),	
	McGraw-Hill (1963) International Book	
	Company	
2	Introduction to Functional Analysis with	Erwin Kreyszig
	Applications, Ch 8, Sections 8.1-8.3, John	
	Wiley & Sons (1978)	
3	Functional Analysis, New Age	Limaye, Balmohan V.
	International Limited, 1996	
4	Functional Analysis, New Age	Jain, P.K., Ahuja, O.P &
	International (P), 1995	Khalil Ahmed
5	Functional Analysis, Narosa, 2002	Chandrasekhra Rao, K.
6	A First Course in Functional Analysis,	Somasundram, D.
	Narosa, 2006	

Attendance Policy:

Department: Mathematics Name of the faculty Member: Dr. Santokh Singh Minhas Course Name: Operations Research II Class: M.Sc Semester: IV Availability Timings: 9.00 AM to 3.00 PM E-mail: <u>santokhmathlkc@gmail.com</u>

Course Objectives:

The objectives of this course is to introduce students to the technique of operation research in mining operation, provide students with skills and knowledge of operation research and its applications in mineral industry and introduce students to practical applications of operation research in big mining projects.

Program Learning Outcomes:

(Knowledge and understanding, Intellectual skills, practical skills) Learning outcomes:

Q. Knowledge and Understanding:

The students will be able to

- Explain the meaning of operation research.
- Know the various techniques of operation research.
- Select an optimum solution with profit maximization.
- Apply the techniques used in operation research to solve real life problem.

R. Intellectual(cognitive/Analytical) skills:

Use operation research to:

- Eliminate customers/clients waiting period for service delivery.
- Illustrate how queuing theory can solve problems with inter-arrival and service times exponentially distributed using operation research.
- Solve transportation problems during the allocation of truck to excavators.

S. <u>Practical skills:</u>

- Identify and develop operational research models from the verbal description of the real system.
- Understand the mathematical tools that are needed to solve optimisation problems. Use mathematical software to solve the proposed models.
- Develop a report that describes the model and the solving technique, analyse the results and propose recommendations in language understandable to the decision-making processes in Management Engineering.

Detailed Course content available at www.gndu.ac.in

Unit	Lecturewise Breakage	No. of Lectures	Mode of Delivery *	Students Role*
Ι	Queueing Theory	4	Lecture	Participation/ Discussion
	Classification of queueing models	5	Lecture	Participation/ Discussion
	Queue model (M/M/1):(∞/FIFO)	4	Lecture	Participation/ Discussion
II	(M/M/1):(N/FIFO)	5	Lecture	Participation/ Discussion
	Birth-Death Process Model	4	Lecture	Participation/ Discussion
	(M/M/C):(∞/FIFO), (M/M/C):(N/FIFO)	5	Lecture	Participation/ Discussion
	(M/M/1):(KIGD)	4	Lecture	Participation/ Discussion
	Power Supply Model	3	Lecture	Participation/ Discussion

III	Inventory Control,	6	Lecture	Participation/
	Economic order quantity			Discussion
	EOQ problems with	4	Lecture	Participation/
	price breaks			Discussion
	Multi item deterministic	5	Lecture	Participation/
	problems			Discussion
IV	Replacement of	5	Lecture	Participation/
	equipment, falls			Discussion
	suddenly			
	Recruitment and	4	Lecture	Participation/
	promotion problem			Discussion
	Equipment renewal	4	Lecture	Participation/
	problem			Discussion
V	Need & methodology of	4	Lecture	Participation/
	simulation			Discussion
	Simulation models	5	Lecture	Participation/
				Discussion
	Monte-carlo Simulation	5	Lecture	Participation/
				Discussion
	Simulation of	6	Lecture	Participation/
	inventory,queueing,main			Discussion
	tenance problems			

- Lectures: Six per week
- Student Seminars: two per week
- Assignments: The students will be asked to read the textbook in advance and write articles on given topics
- PowerPoint Presentations
- Quiz
- Group Discussion

Modes Of Assessment	Minimum Score Required (to Qualify for the next Exam /Class)	
Continuous Internal Evaluation(CIE)		

1.Class Tests(Unit wise)	40%	After Each Unit
		Every Week
2.Student Seminars	40%	Last week Of
3.In House Exams		March
End of Semester	20%	Last Week of April

Reference books:

S.no	Standard reference books	Author
1	Mathematical Programming	Handley, G.
2	Mathematical Programming	Kambo, N.S.
3	Operations Research	Panneerselvam, R.
4	Operations Research	Taha, H.A
5	Operations Research	Kanti Sawrup, Gupta, P.K
		and Manmohan

Attendance Policy:

Department: Mathematics Name of the faculty Member: Dr. Dinkar Sharma Course Name: Discrete Mathematics I Class: M.Sc Semester: IV Availability Timings: 9.00 AM to 3.00 PM E-mail: dinkarmathlkc@gmail.com

Course Objectives:

Throughout the course, students will be expected to demonstrate their understanding of discrete mathematics by being able to do use of mathematically correct terminology and notation, construct correct direct and indirect proofs, and use division into cases in a proof and apply logical reasoning to solve a variety of problems.

Program Learning Outcomes:

(Knowledge and understanding, Intellectual skills, logical skills) Learning outcomes:

T. Knowledge and Understanding:

- Simplify and evaluate basic logic statements including compound statements, implications, inverses, converses.
- Get the knowledge discrete and non-discrete function, graph function, identify one to-one functions, and perform the composition of functions.
- Understanding of how to apply algorithms to problems including searching algorithm, base conversion algorithms and the Euclidean algorithm.
- Express a logic sentence in terms of predicates, quantifiers and logical connectives.

U. Intellectual(cognitive/Analytical) skills:

- Solve counting problems involving the multiplication rule, permutation and combination.
- State the definitions of binary relation, reflexive, symmetric, transitive, equivalence relation, equivalence class, class representative and partitions.
- Connection between cardinality of sets and one-to-one correspondences, and be able to prove two sets have the same cardinality.

V. <u>Logical skills:</u>

- Apply rules of inference, tests for validity and methods of proofs including direct and indirect proof forms, proof by contradiction, and proof by cases and mathematical induction.
- Evaluate Boolean functions and simplify expression using the properties of Boolean algebra, apply Boolean algebra to circuits and gating networks.
- Determine if a graph is a binary tree, N-array tree, or not a tree; use the properties of tress to classify trees, identify ancestors, descendants, parents, children and siblings.

Detailed Course content available at www.gndu.ac.in

Unit	Lecturewise	Number of	Mode of	Students
	Breakage	lectures	Delivery*	Role*
Ι	Binary relations,	4	Lecture	Participation/
	Equivalence, partial			Discussion
	order relations			
	Inclusion and exclusion	3	Lecture	Participation/
	principle			Discussion
	Hasse diagram	2	Lecture	Participation/
				Discussion
	Pigeon hole principle	4	Lecture	Participation/
				Discussion
II	Basic logical operations	2	Lecture	Participation/ Discussion
	Conditional and	3	Lecture	Participation/
	biconditional statements			Discussion
	Tautologics,	3	Lecture	Participation/
	contradiction			Discussion

	quantifiers	4	Lecture	Participation/
	Prepositional calculus	1	Lecture	Discussion Participation/
	1 repositional calculus	4	Looture	Discussion
III	Definition and examples	5	Lecture	Participation/
	of semi groups and			Discussion
	monoids			
	Homomorphism of	4	Lecture	Participation/
	semigroups and monoids			Discussion
	Congruence relations	4	Lecture	Participation/
	and quotient subgroups			Discussion
IV	Phrase structure	4	Lecture	Participation/
	grammars			Discussion
	Rewriting rules,	5	Lecture	Participation/
	derivation sentential			Discussion
	forms			
	Language generated by	6	Lecture	Participation/
	grammar, regular,			Discussion
	context free and context			
	sensitive grammar and			
	languages			
V	Polynomial expression,	5	Lecture	Participation/
	telescopic form			Discussion
	Recursion theorem	3	Lecture	Participation/
	Closed form expression	1	Lecture	Participation/
	crosed form expression,	+		Discussion
		2	Lactura	Participation/
	Solution of recurrence	3	Lecture	Discussion
	relation using generating			
	tunction			

Lectures: Six per week Student Seminars: two per week Assignments: The students will be asked to read the textbook in advance and write articles on given topics PowerPoint Presentations Quiz Group Discussion

Modes Of Assessment	Minimum Score Required (to Qualify for the next Exam /Class)	
Continuous Internal		
Evaluation(CIE)		
1.Class Tests(Unit wise)	40%	After Each Unit
2.Student Seminars		Every Week
3.In House Exams	40%	Last week Of March
End of Semester	20%	Last Week of April

Reference books:

S.no	Standard reference books	Author
1	Discrete Mathematical Structure with	Trambley, J.P. and
	application to Computer Science	Manohar, R
2	Elements Of Discrete Mathematics	Liu, C.L.
3	Applied Discrete Structure for Computer Science	Alan Doer

Attendance Policy:

Department: Mathematics Name of the faculty Member: Prof. Palwinder Singh Course Name: Statistics II Class: M.Sc Semester: IV Availability Timings: 9.00 AM to 3.00 PM E-mail: palwindermathlkc@gmail.com

Course Objectives:

Recognize important differences between descriptive and inferential statistics; distinguish between different types of variables and data; summarize, organize, tabulate and graph statistical data; read and understand statistical data present in various forms of the media; find and analyze measures of center and variation for quantitative data.

Program Learning Outcomes:

(Knowledge and understanding, Intellectual skills, practical skills) Learning outcomes:

W.Knowledge and Understanding:

Students will be able to

- Calculate a critical value from a normal, t, chi square, and f distribution.
- Calculate an appropriate confidence interval for a population parameter for a given data set.
- Perform an appropriate hypothesis tests for a population parameter for a given data set.
- Perform a Chi Square Test of Independence for a contingency table.
- calculate a linear regression for a given data set

X. Intellectual(cognitive/Analytical) skills:

- Understand, apply and compute in one- and two- sample estimation problems.
- Understand, apply and compute in one- and two- sample tests of hypotheses problems.
- Recognize the relationship between the confidence interval estimation and tests of hypothesis.
- Understand, apply and examine the goodness-of-fit test, test for independence and homogeneity.
- Recognize the basic concepts of simple linear regression and correlation.
- Recognize the concept of the analysis-of-variance technique and the strategy of experimental design.

Y. <u>Practical skills:</u>

- Students will be able to compete successfully for internship and employment positions in government, industry, and non-profit organizations.
- Students will have a predisposition for outreach toward application areas such as physical sciences, financial services, and social sciences and have the knowledge, experience, and motivation to bring the tools of mathematics and statistics to bear on real-world problems.
- Students will have the intellectual curiosity and flexibility to grow with developing technology and new methods mathematics and statistics.

Detailed Course content available at www.gndu.ac.in

Unit	Lecturewise	No.of	Mode of	Students
	Breakage	Lectures	Delivery *	Role*
Ι	Chi-Square distribution	4	Lecture	Participation/
				Discussion
	t,F distribution	6	Lecture	Participation/
				Discussion
	Distribution of sample	5	Lecture	Participation/
	mean and variance			Discussion
	Distribution of ordered	4	Lecture	Participation/
	statistics			Discussion
Π	Estimators	3	Lecture	Participation/
				Discussion
	Properties of	4	Lecture	Participation/
	Unbiasedness			Discussion
	Consistency, suffiency,	5	Lecture	Participation/
-----	---------------------------	---	---------	----------------
	Efficiency			Discussion
	Completeness,		Lecture	Participation/
	uniqueness,			Discussion
	Method of estimation	5	Lecture	Participation/
				Discussion
III	Null hypothesis and its	4	Lecture	Participation/
	test of significance			Discussion
	Simple and Composite	2	Lecture	Participation/
	hypothesis			Discussion
	M.P test, U.M.P test,	5	Lecture	Participation/
	Likelihood test			Discussion
IV	Test of mean and	5	Lecture	Participation/
	variance in the normal			Discussion
	distribution			
	Test of single proportion	3	Lecture	Participation/
	and equality of two			Discussion
	proportions			
	Chi-Square test, t-test,	6	Lecture	Participation/
	F-test			Discussion
V	Gauss Markoff Linear	4	Lecture	Participation/
	Model			Discussion
	BLUE, Gauss Markoff	6	Lecture	Participation
	Theorem			Discussion
	Estimation with linear	4	Lecture	Participation/
	restriction on Parameters			Discussion
	Residual sum of squares	4	Lecture	Participation/
	analysis of variance,			Discussion
	analysis of Variance for		Lecture	
	one way and two way			Participation/
	classified data with one			Discussion
	observation per cell			

Teaching methods:

- Lectures: Six per week
- Student Seminars: two per week
- Assignments: The students will be asked to read the textbook in advance and write articles on given topics

- PowerPoint Presentations
- Quiz
- Group Discussion

Modes Of Assessment	Minimum Score Required (to Qualify for the next Exam /Class)	
Continuous Internal Evaluation(CIE)		
1.Class Tests(Unit wise)	40%	After Each Unit
2.Student Seminars	400/	Every Week
3.In House Exams	40%0	March
End of Semester	20%	Last Week of November April

Reference books:

S.no	Standard reference books	Author
1	Intoduction to Mathematical Statistics	Hogg R.V., Mckean, J.W.
		and Craig A.T
2	Intoduction to Mathematical Statistics	Hoel P.G
3	Fundamentals of Mathematical Statistics	Gupta S.C and Kapoor
		V.K
4	Mathematical Statistics	Mukhopadhyay.P
5	An Outline of Statistical theory, Vol. I	Goon, A.M.,Gupta M.K,
		& Dasgupta B.
6	Fundamental of statistic, Vol. I	Goon, A.M.,Gupta M.K,
		& Dasgupta B.

Attendance Policy:

CURRICULUM PLANNING AND IMPLEMENTATION

Department: Mathematics Name of the faculty Member: Ms. Nitika Chugh Course Name: Topology II Class: M.Sc Semester: IV Availability Timings: 9.00 AM to 3.00 PM E-mail: <u>nitika.nitj@gmail.com</u>

Course Objectives:

The aim of the course is to provide for the students an introduction to theory of metric and topological spaces with emphasis on those topics that are important to higher mathematics. The course focuses on the basic notions of metric and topological spaces, properties of continuous mappings selected types of topological spaces (compact and connected spaces) and basic theorems on topological spaces.

Program Learning Outcomes:

(Knowledge and understanding, Intellectual skills, general skills) Learning outcomes:

A. Knowledge and Understanding:

- Mention theories and concepts used in Mathematical Logic and Topology.
- Identify the steps required to carry out a piece of research on a topic within Mathematical Logic and Topology.
- Recognize the contribution and impacts of Mathematical Logic and Topology in real life problem.

B. Intellectual(cognitive/Analytical) skills:

- Apply appropriate theories, principles and concepts relevant to the Topology.
- Formulate a reasoned argument from a variety of sources.

- Analyze and interpret information from a variety of sources relevant to Mathematical Logic and Topology.
- Select a reasoned argument to the solution of familiar and unfamiliar problems relevant to Topology.

C. General skills:

- Think independently, Set tasks and solve problems on ethical scientific basis relevant to Topology.
- Communicate with others positively as part of a group, involving leadership, group dynamics and interpersonal skills such as listening, negotiation and persuasion relevant to Mathematical Logic and Topology.
- Use information and communication technology to discuss problems relevant to Topology.

Detailed Course content available at www.gndu.ac.in

Unit	Lecture wise	No. of	Mode of	Students
	Breakage	lectures	Delivery *	Role*
Ι	Higher Separation	3	Lecture	Participation/
	Axioms: Completely			Discussion
	regular space			
	Tychonoff spaces	4	Lecture	Participation/
				Discussion
	Completely normal	3	Lecture	Participation/
	space			Discussion
	Metric spaces as	4	Lecture	Participation/
	Hausdorff regular,			Discussion
	normal and completely			
	normal space			
	Product of metric spaces	3	Lecture	Participation/
	_			Discussion
II	Compact spaces	4	Lecture	Participation/
				Discussion
	Finite intersection	2	Lecture	Participation/
	property			Discussion

	Compactness of subsets	3	Lecture	Participation/
	of real line			Discussion
	Relation of compact	4	Lecture	Participation/
	spaces with Hausdroff			Discussion
	spaces, regular and			
	normal spaces			
III	Sequentially compact	3	Lecture	Participation/
	spaces			Discussion
	Bolzano Weierstrass	3	Lecture	Participation/
	property			Discussion
	Countably ,Locally	4	Lecture	Participation/
	compact spaces			Discussion
	Compactness in terms	5	Lecture	Participation/
	of base element and			Discussion
	sub- base element			
	Tychonoff theorem,			
	One point			
	compactification			
IV	The Stone –Cech	4	Lecture	Participation/
	compactification			Discussion
	Evaluation mappings,	5	Lecture	Participation/
	Separate point family,			Discussion
	Closed set family,			
	Tychnoff cube,	7	Lecture	Participation/
	Embedding mapping			Discussion
	,Urysohn			
	Metrization theorem			
V	Directed sets and nets,	3	Lecture	Participation/
	Convergence of net in a			Discussion
	space, Clustering of a			
	net, nets and continuity			
	Nets in product spaces,	4	Lecture	Participation/
	Ultra nets, Compactness			Discussion
	in term of nets			
	Filters and Their	4	Lecture	Participation/
	convergence			Discussion
	Ultra filters and	6	Lecture	Participation/
	compactness			Discussion

Teaching methods:

Lectures: Six per week Student Seminars: two per week Assignments: The students will be asked to read the textbook in advance and write articles on given topics PowerPoint Presentations Quiz Group Discussion

Modes Of Assessment	Minimum Score Required (to Qualify for the next Exam /Class)	
Continuous Internal Evaluation(CIE)		
1.Class Tests(Unit wise)	40%	After Each Unit
2.Student Seminars		Every Week
3.In House Exams	40%	Last week Of March
End of Semester	20%	Last Week of April

Reference books:

S.no	Standard reference books	Author
1	Elementary General Topology(Chapter 2 to 8)	T.O.Moore
2	General Topology (Chapter 1 to 5)	J.L.Kelley
3	Topology	J.R.Munkres
4	Introduction to Topology and Modern Analysis	G.F.Simmons
5	Topology, McGraw Hill 2005	S.W.Davis

Attendance Policy:

DEPARTMENT OF MATHEMATICS

CURRICULUM PLANNING AND IMPLEMENTATION

Even Semester (2019-20)

(P.G. Classes)

CURRICULUM PLANNING AND IMPLEMENTATION

Department: Mathematics Name of the faculty Member: Prof. Ajay Kumar & Dr. Dinkar Sharma Class: B.Sc(Non Medical/Computer Science/Economics)/B.A Course: Calculus II Semester: II Availability Timings: 9.00 AM to 3.00 PM E-mail: <u>ajaykaushal1993@gmail.com</u>, <u>dinkar.nitj@gmail.com</u> <u>Course Objectives:</u>

This course introduces the student to integral calculus with the techniques of integration and application of integration to physical problem.

Program Learning Outcomes:

(Knowledge and understanding, Intellectual skills, practical skills) Learning outcomes:

D. <u>Knowledge and Understanding:</u>

- Extend the concept of integrals to a variety of applications, establishing several integration
- Use a variety of mathematical techniques to evaluate integrals
- Develop problem solving skills through diverse applications of the integral
- Analyze the parameterization of curves and the polar coordinate system

E. Intellectual(cognitive/Analytical) skills:

- Examine various techniques of integration and apply them to definite and improper integrals,
- Approximate definite integrals using numerical integration techniques and solve related problems,
- Model physical phenomena using partial differential equations,-
- Compute limits of, differentiate, integrate and solve related problems involving functions represented parametrically or in polar coordinates,
- Differentiate, and integrate functions represented using power series expansions, including Taylor series, and solve related problems.

F. Practical skills:

Students will be able to:

- Evaluate iterated integrals and switch the order of integration.
- Find volumes of solids by calculating appropriate double integrals in rectangular and polar coordinates.
- Find surface area using a double integral.
- Evaluate triple integrals and use them to find volumes in rectangular, cylindrical and spherical coordinates.
- Use a Jacobian to make a change of variables in a double integral.

Section	Lecture wise	No. of	Mode of	Students
	Breakage	Lectures	Delivery *	Role*
А	Limit and Continuity	7	Lecture	Participation/
	of functions			Discussion
	Partial	12	Lecture	Participation/
	Differentiation			Discussion
В	Euler's theorem on	5	Lecture	Participation/
	Homogeneous			Discussion
	functions, Taylor's			
	theorem			
	Jacobians	5	Lecture	Participation/
				Discussion
	Envelopes and	6	Lecture	Participation/
	Evolutes			Discussion
	Maxima , Minima	6	Lecture	Participation/
	and Saddle points of			Discussion
	functions of two			
	variables			
С	Lagrange's	4	Lecture	Participation/
	undetermined			Discussion
	multiplier method			
	Double and Triple	5	Lecture	Participation/
	Integrals			Discussion
	Applications to	9	Lecture	Participation/
	evaluation of areas,			Discussion
	volumes, Surfaces of			
	Solid of revolution			

	Change of order of integration in double integrals	3	Lecture	Participation/ Discussion
D	Application to evaluation of area, volume, surface of solids of revolutions	8	Lecture	Participation/ Discussion

Teaching methods:

- Lectures: Six per week
- Student Seminars: two per week
- Assignments: The students will be asked to read the textbook in advance and write articles on given topics
- PowerPoint Presentations
- Quiz
- Group Discussion

Modes Of Assessment	Minimum Score Required (to Qualify for the next Exam /Class)	
Continuous Internal		
Evaluation(CIE)		
	40%	After Each Unit
1.Class Tests(Unit wise)		
		Every Week
2.Student Seminars	40%	Last week Of March
3.In House Exams		
End of Semester	20%	Last Week of April

Reference books:

S.no	Standard reference books	Author
1	Integral Calculus, Sultan Chand &sons	Narayan, S
2	Advanced Engineering Mathematics	Kreyszig, E
3	Differential calculus, Sultan Chand &sons	Narayan, S

Attendance Policy:

Name of the faculty Member: Prof. Priyanka Sharma Class: B.Sc (Non Medical/Computer Science/Economics)/B.A Course: Calculus and Differential equations II Semester: II Availability Timings: 9.00 AM to 3.00 PM E-mail: priyanka706.ps@gmail.com

Course Objectives:

This course provides an introduction to topics involving calculus and ordinary differential equations. Both Calculus and Differential equations have applications in all areas of applied Sciences and engineering. Upon completion, students will be able to understand the applications of differential and integral calculus and also demonstrate understanding of the theoretical concepts and select and use appropriate techniques for finding solutions to differential equations.

Program Learning Outcomes:

(Knowledge and understanding, Intellectual skills, practical skills,) Learning outcomes:

A. Knowledge and Understanding:

- -Write the definition of indefinite and definite integrals.
- -Define the integral of the inverse trigonometric and hyperbolic functions.
- -State the Fundamental theorem of calculus

-Find general solutions to first order, second order and higher order homogeneous and non-homogenous differential equations with constant and variable coefficients. -find the series solution of differential equation

B. Intellectual(cognitive/Analytical) skills:

-Evaluate Indefinite integral involving hyperbolic functions and Definite integral of all the functions.

-Sketch the graph of curves (Cartesian and parametric co-ordinates)

-Calculate areas of plane regions and arc length.

- Select and apply appropriate methods to solve differential equations.

-Apply power series method to find solution of Differential equations involving Bessel and Legendre equations.

- Use fundamental theorem of calculus to evaluate integral involving algebraic and transcendental functions.

C. Practical skills:

-Present mathematics to others, both in oral and written form clearly and in a well organized manner.

- Have the ability to carry out complex calculations orally and mentally.

Section	Lecture wise	No. of	Mode of	Students
	Breakage	Lectures	Delivery *	Role*
Α	Asymptotes	4	Lecture	Participation/
				Discussion
	Concavity and	4	Lecture	Participation/
	Convexity, Point of			Discussion
	Inflexion.			
	Multiple Points	2	Lecture	Participation/
				Discussion
	Curve Tracing	3	Lecture	Participation/
				Discussion
	Curvature	4	Lecture	Participation/
				Discussion
В	Integration of	2	Lecture	Participation/
	Hyperbolic Functions			Discussion
	Reduction Formulae	8	Lecture	Participation/
				Discussion
	Definite Integrals	5	Lecture	Participation/
				Discussion
	Fundamental theorem	3	Lecture	Participation/
	of integral calculus.			Discussion
	Quadrature	4	Lecture	Participation/
				Discussion
	Rectification	3	Lecture	Participation/
				Discussion
С	Exact Differential	4	Lecture	Participation/
	Equations			Discussion
	Equations of First	5	Lecture	Participation/
	Order and Higher			Discussion
	Degree			

	Clairaut's form,	4	Lecture	Participation/
	Singular solutions			Discussion
	Orthogonal	2	Lecture	Participation/
	Trajectories			Discussion
D	Linear differential	7	Lecture	Participation/
	Equations with			Discussion
	Constant			
	Coefficients,			
	Variation of			
	Parameters Methods,			
	Reduction Methods			
	Linear Equation with	2	Lecture	Participation/
	Variable Coefficients			Discussion
	Series solutions of	4	Lecture	Participation/
	Differential			Discussion
	Equations. Power			
	Series Method,			
	Bessel and Legendre			
	Equations.			

Teaching methods:

Lectures: Six per week Student Seminars: two per week Assignments: The students will be asked to read the textbook in advance and write articles on given topics PowerPoint Presentations Quiz Group Discussion

Modes Of Assessment	Minimum Score	
	Required (to Qualify for	
	the next Exam /Class)	
Continuous Internal		
Evaluation(CIE)		
	40%	After Each Unit
1.Class Tests(Unit wise)		
		Every Week
2.Student Seminars	40%	Last week Of March

3.In House Exams		
End of Semester	20%	Last Week of April

Reference books:

S.no	Standard reference books	Author
1	Introductory Course in Differential	D.A.Murray
	Equations. Orient London Longman (India)	
	1967	
2	Differential Equations, Tata McGraw	G.F.Simmons
	Hill,1972	
3	Integral Calculus, Pothishala Pvt. Ltd.,	Gorakh Prasad
	Allahabad	
4	An Introduction to Ordinary Differential	E.A.Codington
	Equations, Prentice Hall of India, 1961	
5	Advanced Engineering Mathematics, John	Erwin Kreyszig
	Wiley and Sons, 1999	

Attendance Policy:

Name of the faculty Member: Prof. Nitika Chugh Class: B.Sc(Non Medical/Computer Science/Economics)/B.A Course: Solid Geometry Semester: IV Availability Timings: 9.00 AM to 3.00 PM E-mail: <u>nitika.lkc@gmail.com</u> <u>Course Objectives:</u>

This course provides an introduction of solid geometry that studies the size, shape, and position of 2-dimensional shapes and 3-dimensional figures. Students will be able to identify geometric shapes in objects they use in their daily lives. Studying solid geometry provides many foundational skills and helps to build the thinking skills of logic, deductive reasoning, analytical reasoning, and problem-solving.

Program Learning Outcomes:

<u>(Knowledge and understanding, Intellectual skills, practical skills, transferable skills)</u> Learning outcomes:

G. Knowledge and Understanding:

- The method of using virtual reality in desktop application that is intended to be used for solid geometry
- Geometry covers a whole range of concepts which will be encountered in everyday life
- Show them examples of 2-D and 3-D shapes, such as a circle and a sphere
- Geometry has many practical applications like architects and interior designers need to use their geometry knowledge to guide their designs

H. Intellectual(cognitive/Analytical) skills:

- Allowing the systematic use of linear equations and matrix algebra, which are important for higher dimensions
- -
- I. <u>Practical skills:</u>

- 3-D Computer graphics revolutionized animation, Video games, graphics etc.
- Architectural designing is another area in which applications of solid geometry play a major role

Section	Lecture wise	No. of	Mode of	Students
	Breakage	Lectures	Delivery *	Role*
Α	Cylinder and its	7	Lecture	Participation
	properties			Discussion
	Different kind of	3	Lecture	Participation
	Cylinder			Discussion
	Right circular,	8	Lecture	Participation
	elliptic, hyperbolic			Discussion
	and parabolic in			
	straight form			
	Cone with vertex at	3	Lecture	Participation
	origin			Discussion
	Cone as a surface	8	Lecture	Participation
	generated by a			Discussion
	line passing			
	through a fixed			
	curve			
	Right circular and	5	Lecture	Participation
	elliptic cone			Discussion
B	Equation of a surface	5	Lecture	Participation
	of a revolution			Discussion
	Equation of a	4	Lecture	Participation
	ellipsoid			Discussion
	Equation of a	4	Lecture	Participation
	hyperboloid			Discussion
	Equation of a	4	Lecture	Participation
	paraboloid			Discussion
	Surface represented	10	Lecture	Participation
	by general equation			Discussion
	of second degree			
	Tanget line, Tanget	8	Lecture	Participation

plane and Normal	Discussion
planes	

What will be the teaching methods:

Lectures: Six per week Student Seminars: two per week Assignments: The students will be asked to read the textbook in advance and write articles on given topics PowerPoint Presentations Quiz Group Discussion

Modes Of Assessment	Minimum Score Required (to Qualify for the next Exam /Class)	
Continuous Internal Evaluation(CIE)		
1.Class Tests(Unit wise)	40%	After Each Unit
2.Student Seminars		Every Week
3.In House Exams	40%	Last week Of March
End of Semester Exam	20%	Last Week of April

Reference books:

S.no	Standard reference books	Author
1	Analytical Solid Geometry	S. Narayan

2	Advanced Engineering Mathematics	E. Kreyszig	

Attendance Policy:

Name of the faculty Member: Prof. Ajay Kumar Class: B.Sc (Non Medical/Computer Science/Economics)/B.A Course: Statics and Vector Calculus Semester: IV Availability Timings: 9.00 AM to 3.00 PM E-mail: <u>ajaykaushal1993@gmail.com</u>

Course Objectives:

This Course introduces the student to review vector arithmetic, distinguish point and vectors, relate geometric concepts to their algebraic representation, describe point, line, and planes, use the dot product and cross product and their applications in Graphics. In Statics, we deal with equilibrium of bodies under action of forces (bodies may be either at rest or move with a constant velocity)

Program Learning Outcomes:

<u>(Knowledge and understanding, Intellectual skills, practical skills, transferable skills)</u> <u>Learning outcomes:</u>

J. Knowledge and Understanding:

Students will be able to:

- Identify conservative vector fields.
- Find the divergence and curl of a vector field.
- Evaluate line integrals of curves and vector fields.
- Use Green's theorem to evaluate line integrals.
- Gradient vector fields and constructing potentials

K. Intellectual(cognitive/Analytical) skills:

On completion of this module, students should be able to:

a) calculate vector and scalar derivatives of vector and scalar fields using the grad, div and curl operators in Cartesian and in cylindrical and spherical polar coordinates;

b) use suffix notation to manipulate Cartesian vectors and their derivatives;

c) calculate multiple integrals in two and three dimensions including changing variables using Jacobians;

d) calculate line and surface integrals and use the various integral theorems.

Undertake the analysis of symmetric beams under vertical loads and torsion of cylindrical shafts

2. Evaluate plane stresses

L. Practical skills:

- The integral ideas of the functions defined including line, surface and volume integrals both derivation and calculation in rectangular, cylindrical and spherical coordinate systems and understand the proofs of each instance of the fundamental theorem of calculus.
- Examples of the fundamental theorem of calculus and see their relation to the fundamental theorems of calculus in calculus leading to the more generalised version of Stokes' theorem in the setting of differential forms.
- The differential ideas of divergence, curl, and the Laplacian along with their physical interpretations, using differential forms or tensors to represent derivative operations.

Detailed Course content available at www.gndu.ac.in

Section	Lecturewise	No. of	Mode of	Students
	Breakage	Lectures	Delivery*	Role*
Α	Forces acting at a	3	Lecture	Participation/
	point			Discussion
	Any number of	5	Lecture	Participation/
	forces acting at a			Discussion
	point			
	Parallel Forces	4	Lecture	Participation/
				Discussion
	Moments	6	Lecture	Participation/
				Discussion
	Couples	5	Lecture	Participation/
				Discussion
	Equilibrium of three	5	Lecture	Participation/
	Coplanar forces			Discussion
	acting on a rigid			
	body			
	Equilibrium of a rigid	6	Lecture	Participation/
	body under the action			Discussion

	Friction	8	Lecture	Participation/
				Discussion
	Centre of Gravity	8	Lecture	Participation/
				Discussion
В	Differentiation of	7	Lecture	Participation/
	Vectors			Discussion
	Gradient, Divergence	6	Lecture	Participation/
	and Curl			Discussion
	Vector Integration	7	Lecture	Participation/
				Discussion
	Gauss, Green and	7	Lecture	Participation/
	Stoke's Theorems			Discussion

What will be the teaching methods?

Lectures: Six per week Student Seminars: two per week Assignments: The students will be asked to read the textbook in advance and write articles on given topics PowerPoint Presentations Quiz

Group Discussion

Modes Of Assessment	Minimum Score Required (to Qualify for the next Exam /Class)	
Continuous Internal Evaluation(CIE)		
1.Class Tests(Unit wise)	40%	After Each Unit
2 Student Seminars		Every Week
3.In House Exams	40%	Last week Of March
End of Semester	20%	Last Week of April

Reference books:

S.no	Standard reference books	Author
1	Statics, Macmillan and Company, London.	S.L. Loney
2	A text Book on Statics, Optical Pvt. Ltd., Allahabad.	R.S. Verma
3	Introduction to Vector Calculus and Tensor	Spiegal,M.R.
4	Vector Analysis	Spiegal.M.R.

Attendance Policy:

Name of the faculty Member: Prof. Palwinder Singh Class: B.Sc(Non Medical/Computer Science/Economics)/B.A Course: Numerical Analysis Semester: VIth Availability Timings: 9.00 AM to 3.00 PM E-mail: <u>bolinapalwinder@gmail.com</u>

Course Objectives:

This course aims to provide a first approach to the subject of algebra, which is one of the basic pillars of modern mathematics. The focus of the course will be the study of certain structures called groups, rings, fields and some related structures. Abstract algebra gives to student a good mathematical maturity and enables to build mathematical thinking and skill.

Program Learning Outcomes:

<u>(Knowledge and understanding, Intellectual skills, transferable skills)</u> <u>Learning outcomes:</u>

M. Knowledge and Understanding:

Students will know how

- Solve an algebraic or transcendental equation using an appropriate numerical method.
- Approximate a function using an appropriate numerical method.
- solve a differential equation using an appropriate numerical method
- evaluate a derivative at a value using an appropriate numerical method
- code a numerical method in a modern computer language

N. Intellectual(cognitive/Analytical) skills:

- Derive numerical methods for approximating the solution of problems of continuous mathematics,
- Analyze the error incumbent in any such numerical approximation,
- Implement a variety of numerical algorithms using appropriate technology.
- Compare the viability of different approaches to the numerical solution of problems arising in roots of solution of non-linear equations, interpolation.
- And approximation, numerical differentiation and integration, solution of linear systems.

O. Transferable skills:

- solve a linear system of equations using an appropriate numerical method
- Problem solving and Analytical skills
- Be able to develop numerical literacy
- Social responsibility and global citizenship skills

Detailed Course content available at www.gndu.ac.in

Section	Lecture wise	No. of	Mode of	Students
	Breakage	Lectures	Delivery *	Role*
Α	Error Generation and	8	Lecture	Participation/
	Error Estimation			Discussion
	Solution of Non-	8	Lecture	Participation/
	Linear equations			Discussion
	Solution of Linear	9	Lecture	Participation/
	Equations			Discussion
	Forward, Backward,	10	Lecture	Participation/
	Central, Divided			Discussion
	Differences and Shift			
	operators			
В	Finite difference	8	Lecture	Participation/
	interpolation with			Discussion
	equal intervals and			
	unequally spaced			
	points			
	Numerical	9	Lecture	Participation/
	Integration			Discussion
	Numerical	8	Lecture	Participation/
	Differentiation			Discussion
	Numerical Solution	10	Lecture	Participation
	of Ordinary			Discussion
	Differential			
	Equations			

Teaching methods:

Lectures: Six per week Student Seminars: two per week Assignments: The students will be asked to read the textbook in advance and write articles on given topics PowerPoint Presentations Quiz Group Discussion

Modes Of Assessment	Minimum Score Required (to Qualify for the next Exam /Class)	
Continuous Internal Evaluation(CIE)		
1.Class Tests(Unit wise)	40%	After Each Unit
		Every Week
2.Student Seminars	40%	Last week Of March
3.In House Exams		
End of Semester	20%	Last Week of April

Reference books:

S.no	Standard reference books	Author
1	Introductory Methods of Numerical Analysis, 2003 (3 rd Edition), prentice Hall of India	S.S. Sastry
2	Introduction to Numerical Analysis	A.Maritava Gupta and Subash Ch. Bose

Attendance Policy:

Name of the faculty Member: Prof. Priyanka Sharma Class: B.Sc (Non Medical/Computer Science/Economics)/B.A Course: Linear Algebra Semester: VI Availability Timings: 9.00 AM to 3.00 PM E-mail: priyanka706.ps@gmail.com

Course Objectives:

Algebraic structures -- such as groups, rings, and fields -- are pervasive in mathematics. This course focuses on (commutative) rings, which are sets equipped with two (commutative) operations (called addition and multiplication), and that contain an additive identity and an additive inverse for each element of the set. A fundamental example of a ring is Z, the set of integers; other important examples include Q, Z modulo n, and Q[X], which is the set of polynomials in X with rational Coefficients.

Program Learning Outcomes:

(Knowledge and understanding, Intellectual skills, practical skills) Learning outcomes:

- P. <u>Knowledge and Understanding:</u> Students will be able to
- Develop an understanding of linear algebra in mathematics, natural and social sciences.
- Use matrix algebra to analyze and solve equations arising in many applications that require a background in linear algebra.
- Utilize vector space terminology and describe how closely other vector spaces resemble Rⁿ.

Q. Intellectual(cognitive/Analytical) skills:

- Demonstrate factual knowledge of the fundamental concepts of spanning, linear independence, and linear transformations.
- Acquire communication and organizational skills, including effective written communication in their weekly assignments.

- Use visualization, spatial reasoning as well as geometric properties and strategies to mode, solve problems and view solutions especially in R² and R³.

R. General skills:

- Apply mathematical methods involving arithmetic, algebra, geometry and graphs to solve problems.
- Represent mathematical information and communicate mathematical reasoning symbolically and verbally.
- Interpret and analyze numerical data, mathematical concepts and identify patterns to formulate and validate reasoning.

Section	Lecture wise	No. of	Mode of	Students
	Breakage	Lectures	Delivery *	Role*
Α	Group	6	Lecture	Participation/
				Discussion
	Ring	6	Lecture	Participation/
				Discussion
	Field	4	Lecture	Participation/
				Discussion
	Vector Space	7	Lecture	Participation/
				Discussion
	Subspace	5	Lecture	Participation/
				Discussion
	Linear Span, Linear	6	Lecture	Participation/
	Dependence, Linear			Discussion
	Independence of			
	Vectors.			
	Basis of vector space,	9	Lecture	Participation/
	finitely generated			Discussion
	vector space,			
	Existence theorem			
	for Basis, Invariance			
	of number of			
	elements of basis set.			
	Dimension of sum of			
	two subspaces.			

	Quotient Space and	4	Lecture	Participation/
	its Dimensions.			Discussion
B	Linear	6	Lecture	Participation/
	Transformation,			Discussion
	Algebra of Linear			
	Transformation.			
	Rank Nullity	4	Lecture	Participation/
	Theorem			Discussion
	Isomorphism and	4	Lecture	Participation/
	Isomorphic spaces			Discussion
	Matrix of a Linear	7	Lecture	Participation/
	Transformation,			Discussion
	Changes of basis,			
	Linear Operator.			

Teaching methods:

- Lectures: Six per week
- Student Seminars: two per week
- Assignments: The students will be asked to read the textbook in advance and write articles on given topics
- PowerPoint Presentations
- Quiz
- Group Discussion

Modes Of Assessment	Minimum Score Required (to Qualify for the next Exam /Class)	
Continuous Internal		
Evaluation(CIE)		
1.Class Tests(Unit wise)	40%	After Each Unit
		Every Week
2.Student Seminars	40%	Last week Of March
3.In House Exams		
End of Semester	20%	Last Week of April

Reference books:

S.no	Standard reference books	Author
1	Linear Algebra, 2 nd Edition, Prentice Hall, New Jersey, 1971	Herstein, I.N.
2	An introduction to Linear algebra, East West Press,1976	V.Krishnamurthy, V.P.Mainra and J.L.Arora
3	Linear Algebra,1997	Surjit Singh
4	A text book of Matrices, 10 th Edition(2002), S. chand & Co.	Shanti Narayan & P.K. Mittal

Attendance Policy:

Name of the faculty Member: Prof. Ajay Kumar Class: B.Sc(Bio-Technology) Course: Biostatistics Semester: II Availability Timings: 9.00 AM to 3.00 PM E-mail: <u>ajaykaushal1993@gmail.com</u>

Course Objectives:

Biostatistics provides rigorous training in statistical theory and methodologies that are suitable for applications in research, collaboration and consulting on a broad spectrum of health and life science problems. The main purpose of the course is to enable the students to describe and explain the data in with best descriptive statistics measurements and how calculate probability of different events in addition to some important measurements related to clinical studies and industry.

Program Learning Outcomes:

<u>(Knowledge and understanding, Intellectual skills, practical skills, transferable skills)</u> Learning outcomes:

A. Knowledge and Understanding:

Student will be able to

- -Learn statistical methods to analyze summarize and present data.
- -Demonstrate an understanding of the central concepts of modern statistical theory and their probabilistic foundation.

-Communicate the results of statistical analysis accurately.

-Read and learn new statistical procedures independently.

-Understand basics of probability, probability rules and conditional probability rules.

- -Recognize the basic concepts of simple linear regression and correlation.
- -Understand basic statistical theory to design the experiments.

-Aware the assumptions of various statistical methods before experimental design and data analysis.

-Understand the fundamental and principles of Biostatistics.

B. Intellectual(cognitive/Analytical) skills:

-Apply basic concepts of probability, probability laws in solving biological problems in the field of life sciences.

-Apply concepts and methods from biostatistics and epidemiology disciplines jointly.

- Apply and examine the goodness-of-fit test, test for independence and homogeneity.

-Differentiate between methods of data presentation.

-Differentiate between alternative and null hypothesis.

-calculate measures of central tendency and measures of dispersion.

C. Practical skills:

-Communicate effectively with biostatistician and non-biostatisticians collaborators

-Organize results in appropriate visual displays or tables.

-Have fun by crunching number and master a highly useful skill for the career.

-Use results of applied statistics to make informed decisions.

-Give examples of different types of data arising in clinical studies.

Section	Lecture wise	Number of	Mode of	Students
	Breakage	Lectures	Delivery *	Role*
Unit I	Mean	6	Lecture	Participation/
				Discussion
	Median	5	Lecture	Participation/
				Discussion
	Mode	4	Lecture	Participation/
				Discussion
	Standard deviation	6	Lecture	Participation/
				Discussion
	Variance	2	Lecture	Participation/
				Discussion
	Covariance	2	Lecture	Participation/
				Discussion
Unit II	Probability	5	Lecture	Participation/
				Discussion
	Conditional	6	Lecture	Participation/
	Probability,			Discussion

	Independent events			
	Bayes Theorem	5	Lecture	Participation/
				Discussion
Unit III	Scatter diagram	2	Lecture	Participation/
				Discussion
	Linear Correlation	6	Lecture	Participation/
				Discussion
	Linear Regression	6	Lecture	Participation/
				Discussion
Unit IV	Concept of Null and	9	Lecture	Participation/
	Alternate Hypothesis			Discussion
	Chi-square test	6	Lecture	Participation/
	_			Discussion

What will be the teaching methods:

Lectures: Six per week

Student Seminars: one per week

Assignments: The students will be asked to read the textbook in advance and write articles on given topics

PowerPoint Presentations

Quiz

Group Discussion

Modes Of Assessment	Minimum Score Required (to Qualify for the next Exam /Class)	
Continuous Internal Evaluation(CIE)		
1.Class Tests(Unit wise)	40%	After Each Unit
2 Student Seminars		Every Week
3.In House Exams	40%	Last week Of April
End of Semester Exam	20%	Last Week of May Onwards

Reference books:

S.no	Standard reference books	Author
1	Fundamentals of Statistics, Kitab Mahal,	D.N. Elhance
	Allahabad (1984)	
2	Statistics for engineering and sciences(IVth	W. Mendenhall and T.
	edition) Prentice Hall (1995)	Sincich
3	Statistical Methods, Sultan Chand and	S.P. Gupta
	Company, New Delhi (2000)	
4	Fundamentals of Mathematical Statistics,	V.K. Kapoor and S.C.
	Sultan Chand and Company, New Delhi	Gupta
	(2000)	
5	Advanced level Statistics, 4 th Edition,	J. Crawshaw and J
	Melson Thornes (2002)	Chamber

Attendance Policy:

Name of the faculty Member: Prof. Priyanka Sharma Class: Bachelor of Physiotherapy (Part III) Course: Research Methodology and Biostatistics Availability Timings: 9.00 AM to 3.00 PM E-mail: <u>priyanka706.ps@gmail.com</u>

Course Objectives:

Biostatistics provides rigorous training in statistical theory and methodologies that are suitable for applications in research, collaboration and consulting on a broad spectrum of health and life science problems. This course aims to develop working knowledge of how knowledge is collected, presented and disseminated. It develops the ability to formulate a question, find the data relevant to your question, analyze the data and present your finding skills that benefit professional and personal life.

Program Learning Outcomes:

<u>(Knowledge and understanding, Intellectual skills, practical skills, transferable skills)</u> Learning outcomes:

S. Knowledge and Understanding:

- Help to learn ethical, political and pragmatic issues involved in the research process.
- Learn to collect, analyze and interpret research data.
- Help to know the types of descriptive statistics typically reported in educational research.
- Understand the fundamental and principles of Biostatistics.
- Recognize the basic concepts of simple linear regression and correlation.
- Understand the fundamental and principles of biostatistics.

T. Intellectual(cognitive/Analytical) skills:

Enable the students to describe the ethical issues in educational research, including those issues that arise in using qualitative and quantitative research.
Able to distinguish between a population and a sample

- Able to identify the overall process of designing a research study from its inception to its report.

- Calculate measures of central tendency and measures of dispersion.
- Differentiate between the methods of data presentation.
- Differentiate between alternative and null hypothesis.

U. Practical skills:

- Gain a practical understanding of the various methodological tools used for social scientific research.
- Communicate effectively with biostatistician and non-biostatisticians collaborators.
- Organize results in appropriate visual displays or tables.

Section	Lecture wise	Teaching	Mode of	Students
	Breakage	Dates	Delivery*	Role*
А	Importance of	10	Lecture	Participation/
	research in clinical			Discussion
	practice, scientific			
	approach,			
	characteristics,			
	purposes and			
	limitations			
	Ethical issues in	12	Lecture	Participation/
	research, Elements of			Discussion
	informed consent.			
	Structure of a	6	Lecture	Participation/
	research proposal			Discussion
В	Research Question	11	Lecture	Participation/
	including literature			Discussion
	review			
	Principles of	8	Lecture	Participation/
	measurement,			Discussion
	reliability and			
	validity			
	Experimental	9	Lecture	Participation/
	Sampling and Design			Discussion
	Descriptive research	5	Lecture	Participation/
---	------------------------	----	---------	----------------
				Discussion
С	Descriptive Statistics	12	Lecture	Participation/
				Discussion
	Comparison of	8	Lecture	Participation/
	means, T-tests			Discussion
	Analysis of Variance	6		
	Qualitative and	25	Lecture	Participation/
	quantitative			Discussion
	Observations,			
	Measures of central			
	tendency- Arithmetic			
	Mean, Median,			
	Mode, Position of			
	averages, Graphical			
	Representation of			
	data			
	Measures of	8	Lecture	Participation/
	Dispersion			Discussion
	Frequency	3	Lecture	Participation/
	Distribution			Discussion
	Correlations	7	Lecture	Participation/
				Discussion

What will be the teaching methods :

Lectures: Six per week Student Seminars: two per week Assignments: The students will be asked to read the textbook in advance and write articles on given topics PowerPoint Presentations Quiz Group Discussion

Modes Of Assessment	Minimum Score Required (to Qualify for the next Exam /Class)	
Continuous Internal Evaluation(CIE)	the next Exam (Class)	

1.Class Tests(Unit wise)	40%	After Each Unit
2 Student Seminars		Every Week
3.In House Exams	40%	Last week Of March
End of Annual Exam	20%	Last week Of April

Reference books:

S.no	Standard reference books	Author
1	Methods in Biostatistics	J.P
2	Statistics in Medicine	Little Brown, Boston
3	Research for Physiotherapist: Project Design	Hicks-Churchill
	and Analysis	Livingstone
4	Biostatistics: The manual for Statistical	K.V.Rao- J.P
	methods for use in health and nutrition	
5	Research methods in Behavioural Sciences	Mohsin-Orient
		publication

Attendance Policy:

Lecture attendance is mandatory. Students are expected to maintain 75% attendance of the total lectures delivered, failing which they will be detained from appearing in university exams.